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Abstract

We propose a novel methodology for representation learning on graph-structured data, in
which a stack of Bayesian Networks learns different distributions of a vertex’s neighbour-
hood. Through an incremental construction policy and layer-wise training, we can build
deeper architectures with respect to typical graph convolutional neural networks, with ben-
efits in terms of context spreading between vertices. First, the model learns from graphs via
maximum likelihood estimation without using target labels. Then, a supervised readout
is applied to the learned graph embeddings to deal with graph classification and vertex
classification tasks, showing competitive results against neural models for graphs. The
computational complexity is linear in the number of edges, facilitating learning on large
scale data sets. By studying how depth affects the performances of our model, we discover
that a broader context generally improves performances. In turn, this leads to a critical
analysis of some benchmarks used in literature.

Keywords: Structured domains, deep graph networks, graph neural networks, deep
learning, maximum likelihood, graph classification, node classification.

1. Introduction

The development of machine learning methodologies has always been driven by the interest
in modelling the human brain’s inner workings, from the Perceptron (Rosenblatt, 1957) to
Spiking neurons (Izhikevich, 2003) and feedforward neural networks, to name a few. These
models can only process flat inputs, i.e., vectors, so they are not the best candidates to
deal with more involved data representations. Indeed, we often reason about the complex
dynamics of the real world in relational terms by considering entities that interact with
each other. The complexity of these interactions gives rise to different structures, such as
sequences, trees, and graphs. A sequence may be well suited for temporal data, but it
is not adequate to represent a molecule or a social network where entities have multiple
relationships. Hence, choosing a particular structure to solve a problem affects the kind of
information we want to preserve in the data, also referred to as relational inductive bias
(Battaglia et al., 2018). Structured domains allow representing more articulated informa-
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tion than flat data. However, they also need models that explicitly take into account the
chosen relational inductive bias and learn to extract structural patterns. For these reasons,
the adaptive processing of structures is of fundamental importance in machine learning,
data mining, and, more generally, artificial intelligence. Many impactive applications can
take advantage of graph processing methods, such as chemistry (Swamidass et al., 2005),
bioinformatics (Sharan and Ideker, 2006), and social science (Yanardag and Vishwanathan,
2015). Consequently, further investigation is necessary from both theoretical and practical
perspectives.

Depending on the assumptions made about the underlying interactions, researchers
developed a plethora of models: Recurrent Neural Networks (Elman, 1990) and Hidden
Markov Models (Rabiner and Juang, 1986) for sequences; Recursive Neural Networks (Goller
and Kuchler, 1996; Sperduti and Starita, 1997) and Hidden Tree Markov Models (Frasconi
et al., 1998; Diligenti et al., 2003; Bacciu et al., 2012) for trees and directed acyclic graphs
(Micheli et al., 2004); lastly, Deep Neural Graph Networks (DNGNs) as defined in Bacciu
et al. (2020) for arbitrary structures, i.e., graphs, which are the focus of this paper. Notice
that the term DNGN is very general as it comprises, in our context, both iterative and
convolution-based neural architectures (Section 2).

Yet, dealing with structured data is often associated with higher computational costs
and theoretical issues. As a matter of fact, we cannot use an (unconstrained) Recursive
Neural Network on the cyclic dependencies present in a graph because that can induce a
non-converging process to compute the representation of its entities. In the recent past,
kernels have been a very successful approach to deal with graph-structured information
(Ralaivola et al., 2005; Da San Martino et al., 2012), allowing to map pairs of graphs to
similarity scores between the structures. Interestingly, there also exist hybrid methods
between kernels, relational, and logical learning (Frasconi et al., 2014). However, kernels
are typically non-adaptive, as they rely on the computation of human-defined similarity
measures that are often expensive to compute, restricting their applicability to medium-sized
data sets. This is why, in recent years, researchers have designed architectures for graph
learning that focus on each entity’s neighbourhood. There are at least two reasons for such
rapid change: first, the adaptive exploitation of graphs, whose richness of representation
is far superior to simpler structures, could replace kernels’ feature engineering. Secondly,
the increasing availability of this kind of data will soon require methods that scale to large
data sets. Nonetheless, technical obstacles often limit the interaction between far-away
entities, such as the vanishing of the gradient and over-smoothing (Li et al., 2018). As
a result, convolution-based DNGNs are typically not very deep networks with less than
five layers (Kipf and Welling, 2017; Xu et al., 2019), making it challenging to capture long
dependencies.

In this paper, we propose to address these limitations with a novel technique for graph-
structured data called Contextual Graph Markov Model (CGMM), which is flexible in its
construction, efficient, and scalable. It comprises a stack of Bayesian Networks trained in
an incremental layer-wise fashion, whose role is to extract different patterns for each entity
in the structure. As the model can learn from data without any supervised target label,
it is suitable for embedding purposes like struc2vec (Ribeiro et al., 2017) and transfer-
learning. To evaluate its effectiveness, we target graph and node classification, and we
obtain competitive performances when compared to expensive kernels and neural models,
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thus empirically showing the richness of the information captured by the model. Notably,
computational complexity is linear in the number of edges, and we can achieve fine-grained
scalability by distributing each vertex’s job across different computational resources.

We extend our preliminary work (Bacciu et al., 2018a) in the following ways. First, we
devise a more general formulation that accounts for both discrete and continuous vertex
representations, thus increasing the expressiveness of the model. Secondly, we present a
new set of experiments that compare our work with kernels and state of the art DNGNs.
In particular, we thoroughly analyze the effect of depth on performances, showing that we
can build deeper architectures than the typical neural network counterparts. Moreover, we
simplify the construction of the architecture with a considerable saving of training time, and
we study the model’s behaviour by visualizing how messages flow in a real graph. Lastly,
we investigate the usefulness of some commonly used classification benchmarks, showing
that, for some of them, shallow networks seem to be sufficient.

The rest of the article is organized as follows: Section 2 reviews the literature, focusing
on models that are relevant from an architectural point of view; Section 3 presents our
method; Section 4 gives details about the experimental setting; Section 5 discusses our key
findings; finally, Section 6 contains our last remarks.

2. Background

The methods for processing graphs can be divided into four main families, namely kernels,
spectral methods, DNGNs, and probabilistic models. Despite the importance of the former
two, we prioritize vertex-centric ones because they are more efficient and based on the same
underlying principles as our work, though radically different from an architectural point of
view. The rest of the section is intended to be an analysis of different architectures rather
than a comprehensive review of graph processing methodologies. From now on, we will refer
to entities as vertices and the relations between them as edges. Finally, the set of vertices
to which one entity is related is called a neighbourhood.

We can trace the first ideas on neural networks for graphs back to Sperduti and Starita
(1997), who proposed the Generalized Recursive Neuron (GRN) for supervised learning on
hierarchical structures (trees and Directed Positional Acyclic Graphs). Notably, the authors
introduced the idea of neighbourhood aggregation to gather information from a variable
number of vertices. More recently, Micheli (2009) and Scarselli et al. (2009) managed to
deal with cyclic structures using two different neural architectures: the Neural Network for
Graphs (NN4G) and the Graph Neural Network (GNN). These are based on layering and
iterative message-passing schemes, respectively; nowadays, the former goes by the name
of “spatial convolution”. NN4G relaxes the causality assumption of the GRN to use a
feedforward network, and it exploits Cascade Correlation (Fahlman and Lebiere, 1990) to
automatize the construction of the multi-layer architecture; we take inspiration from its
incremental and layer-wise approach to design our model. The Graph Neural Network,
instead, models a graph as a dynamical system, where vertices are guaranteed to reach
a stable state by imposing contractive constraints on the recursive dynamics of the units.
However, the procedure may be slow to converge, which results in higher computational
requirements for training and inference.
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Interestingly, these two formalisms can be unified under an abstract framework called
Message Passing Neural Network (MPNN) (Gilmer et al., 2017); in fact, layers implement
an information spreading mechanism which is very similar to message-passing, as we will
see in the following sections. Nonetheless, the content of the messages is not the same in
different models, being heavily dependent on the architecture.

Recently, the Graph Convolutional Network (GCN) (Kipf and Welling, 2017) has become
a popular model that fits into the MPNN framework. GCN’s formulation approximates the
spectral decomposition of the Laplacian matrix L with a Chebyshev polynomial of degree
one, i.e., L+I where I is the identity matrix. Moreover, the convolution layer is a weighted
sum of a vertex’s neighbourhood, where the weight is given by the combination of learned
parameters and Laplacian entries. The final architecture is a stack of such layers interleaved
by non-linear activations. Li et al. (2018) recently proved that GCNs suffer from the over-
smoothing effect, meaning that the vertices’ representations tend to become similar after
a few layers. As a result, the convolution itself prevents the model from learning long
dependencies.

PATCHY-SAN (PSCN) (Niepert et al., 2016) processes graphs thanks to a very differ-
ent strategy. In particular, the method requires determining a normalized neighbourhood
ordering for each vertex that is consistent across the entire data set, as well as to impose an
upper bound on the neighbourhood size. The ordering is obtained via a non-adaptive pro-
cedure, which may not work well in all situations, and fixing the size of the neighbourhood
makes it necessary to introduce padding or to exclude some of the neighbours. This is why,
generally speaking, an ordering-free procedure should be preferred. GraphSAGE (Hamilton
et al., 2017), on the other hand, exploits a spatial convolution mechanism very similar to
that of NN4G. However, the authors test different neighbourhood aggregation schemes and
extend the self-supervised link-reconstruction loss of Kipf and Welling (2016). Similarly to
PSCN, GraphSAGE relies on a neighbourhood sampling scheme, which needs additional
hyper-parameters, to keep computational complexity constant. Instead, the Graph Iso-
morphism Network (GIN) (Xu et al., 2019) builds upon the limitations of GraphSAGE by
extending it with arbitrary aggregation functions on multi-sets. The model is proven to be
as theoretically powerful as the 1-dim Weisfeiler-Lehman test of graph isomorphism. Very
recently, Wagstaff et al. (2019) gave an upper bound to the number of hidden units needed
to realize permutation-invariant functions over sets and multi-sets.

Some models also apply a pooling scheme after convolutional layers to reduce the size
of a graph. Among those, we find the Edge-Conditioned Convolution (ECC) (Simonovsky
and Komodakis, 2017). ECC is different from most DNGNs in that it learns different
parameters for each edge. Therefore, edge parameters act as weights for the neighbours’
aggregation, which we can interpret as a simple form of attention (Bahdanau et al., 2015).
The pooling scheme of ECC is based on a predefined algorithm, which outputs a pooling map
that maintains differentiability. On the other hand, DiffPool (Ying et al., 2018) proposes an
adaptive pooling mechanism that collapses vertices based on a supervised criterion. DiffPool
is more of a framework rather than a single model: it combines a differentiable encoder for
graphs, such as a GCN, with this pooling strategy so that each part of the architecture
is trainable. DiffPool may have restricted application in contexts where supervised labels
are not available, as there is no easy way to define a self-supervised loss and learn the
pooling maps. ARMA (Bianchi et al., 2019) is another DNGN whose pooling strategy
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deserves mention. For large data sets, ARMA uses the Fiedler vector of a graph to drop
approximately half of the vertices in the graph at each pooling step. The convolutional layer,
based on spectral theory, exploits the ARMA filter, which is known to be more flexible than
the polynomial one. Similarly to ECC, the pooling scheme of ARMA is not adaptive as it
depends on the Laplacian of each graph.

The attention mechanism in the context of graphs was introduced by the Graph At-
tention Network (GAT) (Velickovic et al., 2018). Indeed, GAT uses multi-head attention
on pairs of vertices to determine the importance of an edge, and weight sharing reduces
the number of parameters. Similarly to other DNGNs, GAT’s architecture was fixed to
three layers, and it seems to be slower than simpler methods (Fey and Lenssen, 2019). The
authors report good experimental results on vertex classification tasks, which were later
revised by Shchur et al. (2018).

The Deep Graph Convolutional Neural Network (DGCNN) (Zhang et al., 2018) differs
from other works in two ways. First, it concatenates the output of several graph convolu-
tional layers; secondly, vertices are sorted and aligned by a specific algorithm called SortPool
that produces truncated graph representations. A 1-dimensional Convolutional Neural Net-
work, followed by fully-connected layers, is then used to solve graph classification tasks. Its
extension, the Parametric Graph Convolution DGCNN (PGC-DGCNN) (Tran et al., 2018),
further generalizes the model in order to consider neighbourhoods of radius larger than one.
The sorting scheme of these models, inspired by graph colouring algorithms, relies on the
ability of the convolutional layers to extract consistent colouring across graphs, but this
ability may be hampered by the presence of noise in the data. Our proposal does not need
a sorting scheme because it aggregates the representations of all vertices in the graph.

From the Reservoir Computing field, the GraphESN (Gallicchio and Micheli, 2010) is
an Echo State Network for graphs. GraphESN generates a graph encoding when vertices
reach a stable state in a recursive system subject to contractive constraints. While this may
seem similar to the Graph Neural Network of Scarselli et al. (2009), GraphESN does not
require training except for the last layer, thus addressing the efficiency issue of the former
approach.

A different strategy is taken by Deep Graph Infomax (DGI) (Velickovic et al., 2019),
which incorporates DNGNs into a framework that maximizes the mutual information be-
tween vertex and graph representations. DGI relies on a corruption function to generate a
corrupted version of the input graph, and it learns representations that allow discriminating
between the original and corrupted vertices without having access to supervised target la-
bels. In this sense, the DNGN that produces such representations is encouraged to highlight
differences between graphs, while our approach focuses on modelling the distribution of a
vertex neighbourhood. When solving classification tasks, DGI trains a standard supervised
model on the learned representations, which is the same approach we will adopt in this
work.

The family of probabilistic models for graph data is much smaller than the previous
ones, possibly because there still is no straightforward way to formalize neighbourhood
aggregation in probability terms. The foundational work of Macskassy and Provost (2007)
summarized the first relational probabilistic classifiers for network data. All the proposed
classifiers are motivated by the homophily assumption, which states that linked entities tend
to belong to the same class. More recently, the Variational Graph Auto-Encoder (VGAE)
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(Kipf and Welling, 2016) was proposed as an extension of the Variational Auto-Encoder
(Kingma and Welling, 2014) to address link-prediction on graphs. VGAE can implement
both its encoder and decoder as DNGNs, and the model is trained to reconstruct the graph
structure through vertex embeddings. This model has shown good performances on link
prediction tasks, but it is not directly applicable to other problems such as vertex or graph
classification.

Another model that takes advantage of DNGNs to approximate probability distribu-
tions is the Graph Markov Neural Network (GMNN) Qu et al. (2019), which is defined
for semi-supervised vertex classification but can also be applied to link prediction tasks.
Its formulation borrows from statistical relational learning theory, and it approximates in-
tractable distributions through DNGNs. Specifically, training is performed using the Vari-
ational Expectation-Maximization algorithm (Neal and Hinton, 1998), with an E-step that
captures the posterior distribution of each vertex target label conditioned on its neighbours
and an M-step that maximizes the probability of the labelled vertices (given the posterior
distribution computed at the E-step). Independent DNGNs approximate both variational
steps, and the overall architecture is trained in an end-to-end fashion. Similarly to VGAE,
GMNN cannot be readily applied to graph classification tasks.

On the other hand, Graph2Gauss (Bojchevski and Gnnemann, 2018) is a probabilistic
model that learns to map a vertex’s attributes to the sufficient statistics of a multivariate
Gaussian distribution i.e., mean and covariance matrix. Consequently, the graph structure
is not used at inference time while being taken into account during learning. The catch
is the following: vertices that are structurally closer to each other in the graph should
have similar representations, i.e., statistics of a Gaussian distribution. Graph2Gauss shows
impressive performances on link prediction and an efficient inference strategy, but it cannot
deal with attributed edges, which usually carry important information e.g., the bond type
in molecules.

With respect to the above architectural choices, we propose the first deep probabilistic
model for graphs that can handle arbitrary vertex features (with an extension for discrete
edge features) and model the learning process in a fully probabilistic way. To this end, we
generalize Hidden Tree Markov models (Bacciu et al., 2012) to graphs, using an incremen-
tal layering policy similar to NN4G’s that is necessary to correctly define the probabilistic
layers of our model. As a by-product of this incremental construction, the model does not
suffer from the vanishing of the gradient: this means that each vertex can capture longer
dependencies by just increasing the depth of the architecture as much as we need, with-
out having to introduce other techniques such as Batch Normalization (Ioffe and Szegedy,
2015) and Layer Normalization (Ba et al., 2016). Thanks to layering analyses (Sections
5.3-5.5), we will show how context spreads across the graph and what are the benefits of
depth in terms of classification performance. Instead of relying on a fixed neighbourhood
or sampling schemes, we consider all vertices without discarding information. The proba-
bilistic formulation efficiently leverages examples with respect to their structure and vertex
features, without the need for supervised target labels. Then, the model is combined with
standard classification methods to solve graph and vertex classification tasks. As we will
see, our model recalls a probabilistic version of deep neural graph networks, also called Deep
Bayesian Graph Networks (DBGNs) in Bacciu et al. (2020).
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3. Contextual Graph Markov Model

With CGMM, we aim to bridge the gap between probabilistic learners for trees and Deep
Neural Graph Networks. Our convolutional layer is indeed a Bayesian Network that captures
the neighbourhood’s distribution of each vertex. As in convolutional DNGNs, stacking layers
is necessary to spread information between vertices, but CGMM differs from them in the
construction of the architecture. The model is trained incrementally (layer by layer) on a
set of graphs to construct vertex or graph embeddings without relying on any supervised
label related to the classification task. Then, classical methods such as logistic regression
or a Multi-Layer Perceptron (MLP) use these embeddings to solve vertex/graph supervised
tasks.

We adopt a top-down approach to describe CGMM. To begin with, we give a high-level
overview of the whole architecture so that the reader can understand the rationale behind
the design of the core parts. Next, we discuss the learning process and a straightforward
extension via a structure-aware approximation technique.

3.1. Notation

We consider the problem of learning from a population of graphs G = {g1, . . . ,gN}, where
each sample gi is a graph with varying topology. A graph g = (Vg, Eg,Xg,Ag) is formally
defined by a set of vertices Vg and by a set of edges Eg between pairs of vertices. Each
vertex u has an associated feature vector xu ∈ Xg, which can be continuous or discrete. A
directed edge (u,v) between vertices u and v may hold a feature vector auv ∈ Ag. Instead,
an undirected edge can be modeled by two directed edges having the same features. The
neighbourhood of a vertex u ∈ Vg is defined as N (u) = {v ∈ Vg|(v, u) ∈ Eg}, that is the
set of vertices associated to incoming edges. Without loss of generality, we consider an
open neighbourhood of u i.e., one that does not include u itself unless an explicit self-loop
is present. Depending on the vertex or graph classification task at hand, we will rely on
supervised target labels yv ∀v ∈ Vg and yg, respectively. Finally, we speak of context of a
vertex u to denote the set of vertices that, directly or indirectly, influence vertex u.

3.2. Architecture

Figure 1 presents the overall structure of the architecture. The input is a graph represented
by black interconnected vertices, which is initially fed to the first layer of our model. For
now, it is sufficient to mention that each layer maps every vertex into a vector. This is called
an isomorphic transduction (Frasconi et al., 1998), and details are given in Section 3.3. Any
subsequent layer can use these intermediate representations together with the input graph;
in general, the output of each layer ` will be conditioned on an arbitrary subset L(`) of
previous layers’ outputs.

Once the process completes, there will be n different vectors for each vertex, where n
is the total number of layers of our architecture. Subsequent concatenation yields a richer
representation for all vertices in the graph; if one wants to tackle vertex classification tasks,
a classifier must be trained on these representations. However, in case we are interested in
graph classification, the outputs have to be first aggregated into a single graph embedding;
Section 3.2.2 describes this process in detail.
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Figure 1: The figure shows a high-level overview of the architecture. The goal is to output
a vertex target label yv (shown for one vertex only in the figure) or a graph
target label yg depending on the supervised task at hand. We incrementally build
the network, one layer after another, by fitting all layers on data without using
supervised target labels. Each layer produces a vector representation for each
vertex of the input graph. Dashed arrows emphasize that what is passed on to
subsequent layers is contextual information. The final representation of a vertex
v is obtained by concatenating intermediate representations of that vertex across
different layers. Such representations are used to solve both vertex classification
and graph classification by applying a supervised method to vertex or graph
representations.

Our probabilistic architecture puts forward two significant differences with respect to
recent DNGNs. First of all, the construction of the model is incremental as training is
performed one layer at a time, and parameters are frozen before moving to the next layer.
Secondly, CGMM models the distribution of each vertex in a fully probabilistic fashion,
whereas DNGNs usually rely on supervised labels or self-supervised loss functions (see Sec-
tion 2). Incremental training was introduced by Fahlman and Lebiere (1990) in a supervised
learning context, with the nice advantage that there are no exploding/vanishing gradient
issues. In our case, the incremental construction is also necessary to define the layers of the
model by relaxing the causality assumptions, i.e., avoiding mutual dependencies between
latent variables in the same layer, as discussed in the following Section 3.3.1. Moreover,
it allows us to construct deeper and efficient networks capable of spreading information
without being limited by gradient-related issues (Li et al., 2018).
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Layer 1 Layer 2 Layer 3

Figure 2: We show how the context window of the central vertex in the graph widens. At
the beginning (left graph), the vertex has access to its information only. Then,
from layer two, the vertex is allowed to see its neighbourhood. By the same
token, at layer three, the neighbouring vertices have already encoded their own
neighbourhood knowledge, so the context window broadens.

3.2.1. Context Spreading

One can see how the architecture of Figure 1 resembles Convolutional Neural Networks
(CNNs) (LeCun et al., 1995). Layers are indeed responsible for the aggregation of local
information by generalizing the concept of convolution to non-Euclidean spaces (Bruna
et al., 2014). Intuitively, by repeated application of such convolution, we increase the context
window that each vertex can capture, i.e., the local receptive field. We clarify this aspect
in Figure 2. Consider the central vertex of the depicted graph; at the beginning, context
is limited to the vertex itself. From layer two, the vertex will always process information
coming from its neighbourhood, and at the same time every other neighbour will do the
same. Therefore, the context that a vertex captures at layer three is given by the union of
the neighbouring contexts computed at layer two; for a formal description and proof of this
context behaviour, please refer to Micheli (2009). In a similar vein to hierarchical models
for flat data, our goal is to extract distinct patterns from different layers of the network.
When the structure is of practical importance the architecture will be deeper, but there may
be cases in which a shallow model is sufficient; Section 5 provides an interesting example.

3.2.2. Graph Fingerprint Construction

We can build a graph fingerprint in 2 steps, as shown in Figure 3. Vertex representations of
different layers are concatenated into |Vg| vectors of longer size. We choose concatenation
as the most conservative choice because others do not guarantee the same expressivity (e.g.,
a weighted sum). This choice is also necessary to keep the process completely separated
from any supervised target label. At this point, the concatenated vectors have to be merged
together to obtain the graph fingerprint, so we use either sum or mean. Notice that the
mean abstracts from the size of a graph and focuses on vertex distributions, whereas the
sum tells us which features are most prevalent in the graph. It is reasonable to assume
that the best choice is task-dependent. To simplify our analysis and generate task-agnostic
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|Vg| × C

Layer 1

Layer 2

concatenate
|Vg| × 2C

aggregate
1× 2C

Graph Embedding

Figure 3: Example of a graph embedding construction in an architecture of two layers.
Each layer outputs a representation of size C for each vertex u ∈ Vg. After a
concatenation step, vertex representations (of size 2C) are aggregated to form
the required graph embedding. The permutation invariant function over multi-
sets, which we use to perform the aggregation, influences the final result.

graph representations, we do not incorporate adaptive aggregation functions as in Zaheer
et al. (2017) and Xu et al. (2019).

So far, we have described how we construct a deep architecture to create vertex and
graph embeddings. We now turn our attention to the core module of CGMM that enables
fast probabilistic reasoning on vertices.

3.3. Probabilistic Layer

The goal of each CGMM’s probabilistic layer is to learn a mapping from a vertex to a
fixed-size representation, conditioned on the graph structure. To this end, we develop a
Bayesian Network that models the generation of a vertex’s features while dealing with a
variable number of neighbours.

3.3.1. Model Definition

The network of a generic layer ` is shown in Figure 4. We follow the convention that a
shaded vertex corresponds to an observable random variable, whereas a white vertex is
associated with an unobserved random variable. A latent factor Qu with C attainable
values is responsible for the generation of vertex u’s features xu via an emission distribution
P (xu|Qu). Here, we assume that all vertices are i.i.d when the value of Qu is observable,
which works well because structural dependencies are encoded in Qu through layering (as
discussed in Section 3.2.1). To take into account u’s neighbourhood N (u), we condition the
posterior distribution of the variable Qu on the set of vertex states q inferred at previous
layers. The state of a vertex u is defined as the posterior distribution of its latent factor
Qu, which has the form of a vector of size C. Specifically, we identify with qv the observable
state of vertex v that has been inferred at layer `− 1, with j-th component qv(j). We then
formally define the probability of a graph at layer ` as

P (g) =
∏
u∈Vg

C∑
i=1

P (xu|Qu = i)P (Qu = i|q`−1N (u)). (1)

By means of marginalization, we have introduced the latent variable Qu; furthermore, q`−1N (u)
denotes the set of observable states associated to u’s neighbourhood. Importantly, not know-
ing the size of N (u) makes the definition of the posterior distribution of a vertex challenging
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Layer ℓ

qℓ−1
N (u)qℓ−1

2qℓ−1
1

xu

Q|Vg|Qu−1Q1 Qu

. . .

. . .. . .

Figure 4: The Bayesian Network that implements layer ` of our model. Shaded and white
vertices denote observable and unobserved random variables, respectively. The
generation of a vertex features xu is conditioned on a latent factor Qu, which in
turn depends on the contextual information coming from previous layers (dashed
arrows). Depending on the form of xu, we can use a multivariate Gaussian for con-
tinuous attributes or a categorical distribution for discrete ones. Finally, dashed
vertices correspond to the latent factors of other vertices that depend on different
sets of observable neighbours.

to formalize, and the joint distribution of all neighbours quickly becomes intractable (due
to the exponential growth in the number of parameters needed). Notice that the cardinality
of q`−1N (u) may vary, and if we do not assume any vertex ordering we can weigh contributions
of the states equally:

P (Qu = i|q`−1N (u)) ≈
1

|N (u)|
C∑
j

P (Q = i|q = j)
∑

v∈N (u)

q`−1v (j), (2)

i.e., we take the average of the elements in q`−1N (u). We want to stress that this may not be
the only possible choice, but it returns a correct probability value. With Equation 2, we
extend the formalization used in Bacciu et al. (2018a) to handle observable states defined
in terms of their posterior distribution. To recover the discrete formulation, it suffices to
represent a state qv ∈ {1, . . . , C} as a one-hot vector where all the probability mass is placed
on the i-th entry of maximum value. Nonetheless, the extension leads to a different form of
the learning equations. Overall, the parameters of our model are the emission distribution
P (x|Q) and the transition distribution P (Q|q).

Before we move to the training and inference procedures, we have to make important
remarks. The probabilistic model we have just described is an extension of the Hidden Tree
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Markov Model (HTMM) of Bacciu et al. (2012) to the processing of cyclic dependencies.
Because a Bayesian Network is defined for acyclic dependencies only, we cannot connect
random variables according to the graph structure, as done in HTMMs for trees. Indeed,
if two latent variables Qu and Qv had mutual dependencies due to an explicit cycle or
undirected edges, we would incur in a recursive and impractical definition of the latent
states. Therefore, we must rely on a strategy that relaxes the causality assumptions between
variables of the same layer. As discussed in Figure 4, we achieve this by considering a frozen
representation of the neighbouring states of the latent Qu, thus approximating the effect
of mutual dependencies with what has been computed at previous layers and avoiding the
need for recursive definitions of the state space. Not only is the incremental construction
functional to the spreading of context between the vertices (Figure 1), but it is necessary to
implement the Bayesian Network and to enhance efficiency. In this context, an “end-to-end”
training of many layers is impractical because it would require not to freeze the previous
latent variables. In turn, this amounts to consider exponentially large combinations of
hidden states that depend on the structure of the graph, thus hampering the creation of
deep architectures.

Secondly, a stationary assumption on all parameters is used to cope with graphs of
varying sizes, i.e., we learn the same distributions for all vertices. This means that station-
arity allows the model to generalize to unseen instances rather than assuming a maximum
graph size in the true data distribution. To cope with varying neighbourhood dimensions,
we aggregate neighbours as done in other works (Micheli, 2009; Hamilton et al., 2017).
This strategy does not require any kind of neighbourhood sampling scheme, nor it imposes
limitations on the neighbourhood size.

3.3.2. Training

We define learning as a maximum likelihood estimation problem. Given the graphical model
in Figure 4, the likelihood of a data set G of i.i.d graphs at level ` is

L(θ|G) =
∏
g∈G
u∈Vg

C∑
i=1

P (xu|Qu = i)P (Qu = i|q`−1N (u)), (3)

which we now know how to compute from Section 3.3.1. Equation 3 is similar to a mixture
model with a variable number of additional “inputs”; when q is not available, as is the
case for the first layer, we recover the usual mixture model (Bishop, 2006). Likelihood can
be thus maximized with the Expectation Maximization (Moon, 1996) algorithm; to this
aim we define the indicator variable zuij , which is one when vertex u is in state i and its
neighbours are in state j.

During the E-Step, we need to compute the posterior of the indicator variables, which
can be shown to be equivalent to

E[zuij |G,q] = P (Qu = i, q = j|G,q)

=
1

Z
P (xu|Qu = i)P (Qu = i|q = j)

∑
v∈N (u) q

`−1
v (j)

|N (u)| , (4)
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where Z is a simple normalization term. Such posterior probabilities are then used to
update the model parameters at the M-Step:

P (Q = i|q = j) =
1

Z

∑
g∈G
u∈Vg

E[zuij |G,q].

Instead, the update rule for a categorical emission with K attainable values is

P (y = k|Q = i) =
1

Z

∑
g∈G
u∈Vg

δ(xu, k)E[zui|G,q],

where δ(·, ·) is the Kronecker delta, and E[zui|G,q] is obtained by straightforward marginal-
ization of the posterior term computed at the E-step. When dealing with a continuous label,
one could use a univariate Gaussian distribution, and the corresponding M-step equations
are

µi =

∑
g∈G
u∈Vg

xuE[zui|G,q]∑
g∈G
u∈Vg

E[zui|G,q]
,

σi =

√√√√√√
∑

g∈G
u∈Vg

E[zui|G,q](xu − µoldi )2∑
g∈G
u∈Vg

E[zui|G,q]
.

3.3.3. Inference

The inference phase takes the most likely index associated to the posterior of Qu as rep-
resentative for vertex u. In other words, it assigns u to one of the C potential clusters.
Formally, this can be expressed as

max
i
P (Qu = i|g,q`−1N (u)) = max

i

P (xu|Q = i)P (Q = i|q`−1N (u))

�������
P (xu|q`−1N (u))

. (5)

The equivalence is obtained by straightforward application of the Bayes Theorem; moreover,
the denominator does not contribute to the maximization because it is independent of i, so
it can be dropped. To compute the numerator, we apply again Equation 2.

3.3.4. Different Vertex Representations

As noted previously, the inference phase returns the most likely index of Qu. Hence, we
convert this discrete value into a one-hot vector of C entries, as discussed above. This
way, the graph fingerprint is constructed as a bag-of-states encoding that counts how many
vertices are in a particular cluster at each layer.

However, consider the case of the posterior distributions of two vertices, with C =
3, being (0.4, 0, 0.6) and (0, 0.4, 0.6); picking the most likely cluster discards important

13
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information about the probability of being in the others. This is why we may want to use
the continuous vector of posterior probabilities. The trade-off is between a less noisy but
approximate representation and a possibly noisy but exact one; we treat this choice as a
hyper-parameter. In both cases, we call such C-sized representation a unigram.

In addition, we can augment the vertex representation with a bigram, i.e., a C2-sized
vector which reflects how neighbours of vertices are distributed. Formally, the bigram Φ(u)
(Bacciu et al., 2018b) of a vertex u is defined as

Φij (u) =
∑

v∈N (u)

qu(i)qv(j), i, j ∈ 1, . . . , C.

In the remainder of this paper, whenever a bigram is used, we concatenate it with its
corresponding unigram, and the resulting vector is called unibigram. Unigrams are clearly
less expensive to compute; in turn, unibigrams constitute a richer vertex representation.

3.3.5. Extending CGMM to Incorporate Contributions from Multiple
Previous Layers

So far, we have assumed that only the states computed at the previous layer contribute to the
maximization of Equation 1. However, it is possible to modify the CGMM layer to consider
contributions from an arbitrary subset L(`) of previous layers. To this aim, we introduce
a random variable Lu, also called Switching Parent (SP) variable (Saul and Jordan, 1999;
Bacciu et al., 2013). Formally, an SP’s role is to decompose a complex distribution into a
convex combination of simpler ones:

P (i|i1, i2, ..., ik) ≈
k∑

µ=1

P (SP = µ)Pµ(i|iµ).

In this work, the role of Lu is to weigh states according to the layer they belong to. Simply
put, this variable approximates the original posterior distribution by “grouping” the pre-
vious states q by their layer. Similarly to other neural networks for graphs (Micheli, 2009;
Kipf and Welling, 2017), the use of Lu can be seen as a form of weighted skip connections
over previous layers.

The finite cardinality of the set L(`) makes it possible to apply the SP approximation
to our problem. We therefore use the random variable Lu to rewrite Equation 1 as

P (g) ≈
∏
u∈Vg

C∑
i=1

P (xu|Qu = i)
∑

`′∈L(`)

P (Lu = `′)P `
′
(Qu = i|q`′N (u)). (6)

Here, q`
′

N (u) is the subset of u’s neighbouring states that are associated to layer `′. Notice

that this definition requires additional transition distributions P `
′
(Qu = i|q`′N (u)) ∀`′ ∈ L(`).

From a learning point of view, the introduction of a SP variable only requires the addition
of a new indicator variable in the posterior estimate, i.e., E[zui`′j |G,q] = P (Qu = i, Lu =
`′, q = j|G,q). The interested reader can find the complete derivations in Appendix A,
where we also show how to deal with discrete edge features using the same technique.
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Figure 5: From left to right: two non-regular graphs that can be discriminated by adding
degree information to each vertex; two regular graphs that cannot be discrimi-
nated by the 1-dimensional Weisfeiler-Lehman test of graphs isomorphism.

Importantly, the SP approximation fits inside our framework because it does not require
reasoning about all layers at the same time. Different decompositions, e.g., conditioning the
state of a vertex on the “history” of previous posteriors (like RNNs or Hidden Markov Mod-
els), assume that states are not frozen and can change altogether through a shared transition
function. While more flexible than an SP approximation, it is not possible to apply any
of these to CGMM, as it would reintroduce mutual dependencies between unobserved vari-
ables (that we have broken thanks to the incremental construction). This technique could
be helpful in some tasks, and it provides a principled way to consider skip connections in a
probabilistic framework. In Section 5, we study how considering all previous layers affects
performances.

3.3.6. Limitations

As we have seen, the probabilistic nature of the model allows it to learn the distribution of
each vertex’s neighbourhood. However, care must be taken when discriminating between
structures with different connectivity and the same local distributions. For example, the
two leftmost graphs in Figure 5 have neither vertex nor edge features, and they share the
same structure but for one edge. From a probabilistic point of view, the distribution of
the neighbourhood’s states is always the same, regardless of a vertex’s degree, which makes
learning difficult. We can mitigate this issue by introducing the notion of vertex degree
via a special state ⊥ called bottom. The idea is to connect each vertex to several “ghost”
vertices with a special edge type and apply an SP variable for discrete edges that weighs
the importance of “bottom” states (see Appendix A). Thus, by denoting with deg(g) the
maximum degree of a graph g, we can connect vertex u to deg(g)− deg(u) ghost vertices in
bottom state. Moreover, we can also encode vertex u’s degree into xu and use a Gaussian
emission distribution.

Conversely, there are classes of graphs that cannot be distinguished so easily, such as
k-regular graphs, that is those such that deg(u) = k ∀u ∈ g. In particular, this is the family
of structures that can be discriminated by the k-dim Weisfeiler-Lehman (WL) test of Graph
Isomorphism (Douglas, 2011). Recently, Xu et al. (2019) formally proved that almost all
convolutional DNGNs are at most as powerful as the 1-dim WL test. We provide an example
of two regular graphs on the right-hand side of Figure 5. To be able to discriminate these
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Algorithm 1: Probabilistic Incremental Training

Input: Data set G, maximum number of layers `max and epochs epochmax.
Output: A data set of node graph representations

1 for `← 1 to `max do
2 Initialize layer ` according to L(`) and C;

3 Load q`
′
G ∀`′ ∈ L(`);

4 for epoch ← 1 to epochmax do

5 ∆likelihood, posteriors ← E-Step(G,qL(`)
G ) (Equation 4);

6 M-Step(posteriors) (update equations);
7 if ∆likelihood < threshold then
8 break;
9 end

10 end

11 q`G ← Inference(G) (Equation 5);

12 Store q`G ;

13 end

14 RVG ← concatenate(q`G ∀` ∈ {1, . . . , `max});
15 RG ← aggregate(RVG );
16 return RVG , RG ;

graphs, Morris et al. (2019) proposed a DNGN that can be theoretically as powerful as the
k-dim WL test, with a computational cost that, however, grows exponentially with k.

3.4. Complexity and Scalability

Thanks to CGMM’s architectural flexibility, training cost of each layer ` can range from
constant (|L(`)| = 1) to depth-specific (|L(`)| = ` − 1). Time and space complexity of a
training epoch can be bounded by the cost of learning the transition and emission distri-
butions, which is O(|VG |(|L(`)||C2| + KC)), where VG stands for the set of vertices in the
whole data set. The computation of q, on the other hand, has time complexity O(|EG |)
because it only needs access to the structure. The overall time computation is therefore
bounded by the sum of these two asymptotic terms that can be written as O(|VG |+ |EG |).

Similarly to DNGNs, the i.i.d assumption on vertices given the latent factors makes
it easy to implement mini-batch training, with which we can arbitrarily reduce the mem-
ory fingerprint; this is especially important in hardware-constrained scenarios. Also, data
parallelism could be trivially achieved by distributing the epoch’s mini-batches on different
computing vertices, such as CPUs or a cluster of machines. For these reasons, CGMM is
a suitable candidate to handle large-scale graph learning. Up to now, our implementation1

does not exploit intra-epoch parallelization: each training epoch was just fast enough for
our purposes.

1. The implementation is available here: https://github.com/diningphil/CGMM.
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Data set Graphs Task Vertices Edges Vertex Feat. Classes
D&D 1178 Graph Class. 284.32 715.66 89 2
NCI1 4110 Graph Class. 29.87 32.30 37 2
PROTEINS 1113 Graph Class. 39.06 72.82 3 2
IMDB-B 1000 Graph Class. 19.77 96.53 1 2
IMDB-M 1500 Graph Class. 13.0 65.94 1 3
COLLAB 5000 Graph Class. 74.49 2457.78 1 3
PPI 24 Vertex Class. 2372.67 34113.17 50 121

Table 1: Data sets’ statistics. Note that PPI is a multilabel classification problem.

To summarize this Section, we provide a pseudo-code of the incremental training proce-
dure in Algorithm 1, showing how the ideas described so far are put together to construct
vertex (line 14) and graph (line 15) representations.

4. Experiments

The Section illustrates the experimental setting. First of all, we present the data sets used to
assess CGMM’s efficacy. Then, in order to foster reproducibility, the set of hyper-parameters
and the risk assessment procedure are thoroughly described.

4.1. Data Sets

We extend the comparison in Bacciu et al. (2018a) with six common graph classification
benchmarks (Kersting et al., 2020) and one vertex classification task. As regards graph
classification, three data sets come from the chemical domain, while the others are social
network data sets. D&D (Dobson and Doig, 2003) is a data set of proteins in which we
have to distinguish between enzymes and non-enzymes; this data set is computationally
challenging for kernels because of the high connectivity and size of each graph. Similarly, in
PROTEINS (Borgwardt et al., 2005), vertices are connected if they are neighbours in the
amino-acid sequence or 3D space. The last chemical data set, NCI1 (Wale et al., 2008), is
the biggest in terms of the number of graphs. It contains two balanced subsets of chemical
compounds that need to be classified according to their ability to suppress the growth of a
panel of human tumour cell lines. Instead, IMDB-BINARY and IMDB-MULTI (Yanardag
and Vishwanathan, 2015) are movie-collaboration data sets where vertices represent ac-
tors/actresses, and there is an edge every time two of them appeared in the same movie;
the task is to classify the associated movie genre. Finally, COLLAB (Leskovec et al., 2005)
is a scientific-collaboration benchmark derived from 3 other data sets, and the task is to
classify the specific research field each community belongs to. To test CGMM performance
on vertex classification tasks, we use the protein-protein interaction data set (PPI) intro-
duced in Hamilton et al. (2017). In this task, we are given a set of distinct large graphs,
and our goal is to classify their vertices.

We provide a summary of the data sets statistics in Table 1. Notice that all collaboration
data sets have no information except their structure. The absence of vertex features is a
degenerate case that prevents a probabilistic model from learning any vertex distribution.
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As done in Niepert et al. (2016), when a vertex has no features, we add its degree as a
continuous value as well as the bottom states discussed in Section 3.3.6.

4.2. Hyper-parameters

We now list the hyper-parameters needed by CGMM and by the supervised classifier working
on graph and vertex representations. We achieve constant per-layer complexity by setting
|L| = 1, but we also evaluate the impact of all previous layers at the cost of additional
computation. The number of EM epochs is fixed to 10: the reason is that likelihood always
stabilizes around that value in our experiments.

Moreover, we tried to use both continuous and discrete vertex representations, as de-
scribed in Section 3.3.4. On the contrary, the aggregation function (sum or mean) was
usually fixed after an initial experimental screening, which helped to reduce the grid di-
mension. Overall, the different configurations of CGMM’s architecture depended on two
hyper-parameters only: the number of hidden states C and the number of layers. Further-
more, we can exploit the incremental nature of our model to reduce the dimension of the
grid search space: if the set of depth hyper-parameters has maximum value N , we train a
single network of N layers and “cut” it to obtain different architectures of depth M < N .

Contrarily to our previous work (Bacciu et al., 2018a), we did not use the “pooling”
strategy of Fahlman and Lebiere (1990): in short, it consists of training a pool of candidate
Bayesian Networks at each layer and selecting the best one according to some metric, e.g.,
validation performances. This choice is motivated by empirical studies that will be presented
in Section 5.4. The training time improvement factor is equal to the number of candidates
that were used in Bacciu et al. (2018a), i.e., 10×.

Another point to consider is whether the learned representations are sufficient to linearly
separate classes; to this end, we introduced a logistic regressor in the grid search. However,
we add a flexible alternative in the form of a one-hidden-layer MLP with ReLU activations.
Both of them are trained with Adam (Kingma and Ba, 2015) optimizer and Cross-Entropy
loss (Mean Squared Error for PPI); to contrast overfitting, we introduced L2 regularization.
Also, we used the early stopping technique called Generalization Loss (Prechelt, 1998)
with α = 5, which is considered to be a good compromise between training time and
performances. In Table 5, we report the number of epochs after which early stopping
starts; at the beginning of training, validation loss smoothly oscillates and accuracy does
not steadily increase, so it would be unwise to apply this technique immediately. For space
reasons, we list the hyper-parameters table in Appendix B.

4.3. Risk Assessment

To assess CGMM’s classification performance, we used a Double Cross-Validation with 10
external folds and 5 internal folds. The internal folds are needed for grid-search model
selection, which returns a biased estimate (optimization is done on validation folds) of the
best hyper-parameters for each external split. Then, these configurations are retrained
on the corresponding external training fold (using a validation set to do early stopping)
and evaluated on the external test fold. We repeat each final retraining three times and
average results in order to mitigate possible bad random initializations. The output of this
procedure is an estimate of CGMM’s performance. Importantly, the test fold was never
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Kernel Cost Reference

GK O(|G|2ndk−1) Shervashidze et al. (2009)
RW O(|G|2n3) Vishwanathan et al. (2010)
PK O(m(h− 1) + h|G|2n) Neumann et al. (2012)
WL O(|G|hm+ |G|2hn) Shervashidze et al. (2011)

CGMM O(|G|n+ |G|m)

Table 2: Computational costs of graph kernels compared to CGMM. We assume that all
graphs have size n = |Vg|, m = |Eg| edges and maximum degree d. Moreover, k is
the size of the graphlets that GK counts, and h is the number of iterations needed
by different procedures to compute the final similarity scores.

seen throughout the entire process; unfortunately, we have observed this is not always the
case in DNGNs’ literature, where model selection’s best results, i.e., those of a k-fold cross-
validation, are reported. This trend is also criticized in Klicpera et al. (2019). Consequently,
we compare with results from Tran et al. (2018), where the authors performed an external
10-fold cross-validation with a simple hold-out internal model selection procedure. Their
process is repeated ten times with different splits, and results are averaged. This approach,
which is similar to bootstrapping, is less subject to unlucky splits with consequent variance
reduction; on the other hand, it might be more biased than a k-fold cross validation (Kohavi,
1995), which is why we use the latter. Despite these differences, both evaluations are
robust and comparable estimates of a model’s performance. A train/validation/test split
was already provided for PPI, so we used a standard hold-out technique for this task.

5. Results and Discussion

In the following, we present CGMM’s results on graph and vertex classification, along with
empirical studies on the beneficial effects of depth. Indeed, depth gives hints on CGMM’s
ability to extract useful information, as well as how much structural features are essential for
the task at hand. We support our reasoning via stability results, which led us to a relevant
insight into some of the data sets used. Then, we perform hyper-parameters’ analyses to
study their impact on the final performance. Finally, we visualize how the model moves
information among vertices and what is the average contribution of an input state to the
new output representation.

5.1. Graph Classification

We evaluate the performance of our method against different kernels and deep learning
techniques for graph classification. Table 2 provides a comparison between the kernels
considered in terms of computational costs. As we can see, kernels are not adequate when
it comes to large scale training and inference because of their (at least) quadratic time
complexity in the number of graphs. Moreover, the considered kernel for graphs are not
applicable to continuous vertex features, which limits their scope. Apart from these and
some of the DNGNs introduced in Section 2, we will consider the Deep Graphlet Kernel
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D&D NCI1 PROTEINS IMDB-B IMDB-M COLLAB
GK 74.38± 0.7 62.49± 0.3 71.39± 0.3 - - -
RW > 3 days > 3 days 59.57± 0.2 - - -
PK 78.25± 0.5 82.54± 0.5 73.68± 0.7 - - -
WL 78.34± 0.6 84.46± 0.5 74.68± 0.5 - - -
ARMA 74.86 - 75.12 - - -
PSCN 76.27± 2.6 76.34± 1.7 75.00± 2.5 71.00± 2.3 45.23± 2.8 72.60± 2.15
DCNN 58.09± 0.5 56.61± 1.0 61.29± 1.6 49.06± 1.4 33.49± 1.4 52.11± 0.7
ECC 72.54 76.82 - - - -
DGK - 62.48± 0.3 71.68± 0.5 66.96± 0.6 44.55± 0.5 73.09± 0.3
DGCNN 79.37± 0.9 74.44± 0.5 75.54± 0.94 70.03± 0.86 47.83± 0.9 73.76± 0.5
PGC-DGCNN 78.93± 0.9 76.13± 0.7 76.45± 1.02 71.62± 1.2 47.25± 1.4 75.00± 0.58
CGMM-nb 77.35± 1.6 77.02± 1.8 75.11± 2.8 71.07± 3.5 47.36± 3.4 73.3± 2.9
CGMM-full 77.20± 3.1 76.94± 1.6 75.45± 4.4 72.30± 3.5 49.42± 3.6 76.06± 2.4
CGMM 77.15± 3.5 77.80± 1.9 75.56± 3.0 72.1± 2.3 49.73± 1.6 75.50± 2.74

Table 3: CGMM’s results of a 10-Fold Double Cross Validation for graph classification.
Best results are reported in bold. We report CGMM’s accuracy on NCI1 in bold
because it performs better than the other neural models. CGMM-nb indicates
that the model is not using bigram features, whereas CGMM-full represents the
extended CGMM using all previous layers rather than just the previous one.

(DGK) framework (Yanardag and Vishwanathan, 2015) and the Diffusion Convolutional
Neural Network (DCNN) (Atwood and Towsley, 2016), which is a precursor of GCN.

Results for graph classification are shown in Table 3. CGMM performs well in all data
sets (scoring top-3 on five of them), even though the probabilistic architecture was not
optimized to solve a classification task. In particular, we achieve state of the art results on
all three collaborative data sets, and we improve the best result on NCI1 compared to all
supervised DNGNs. This suggests that learning the distribution of a vertex’s neighbourhood
at different abstraction’s levels produces a good representation. As a matter of fact, in 9
out of 10 external folds on NCI1, the model selection procedure chose a configuration
with 20 layers; in contrast, the DNGNs of Table 3 exploit a maximum of 4 layers only,
possibly interleaved by batch normalization (Ioffe and Szegedy, 2015) to accelerate training.
Furthermore, results also highlight that CGMM performs well even when the only source
of information is structural.

Note that kernels can process and compare graphs more explicitly than vertex-centric
models: one of the reasons why the WL kernel has higher accuracy on NCI1 may be due
to the kind of structural patterns it uses to compute the similarity score. However, the
number of scores to compute may quickly become impractical, as we can see from Table 2.
Please notice the difference between context-expansion via neighbourhood aggregation and
the standard kernel approach: the former provides higher-level representations of a graph,
while the latter looks for similar substructures between each pair of vertices or graphs.

Some chemical benchmarks deserve a more in-depth analysis. Because the accuracy on
D&D and PROTEINS seems comparable for both kernels and vertex-centric models, we
decided to study the effect of context on these data sets. Section 5.4 will show that we can

20



Probabilistic Learning on Graphs

trivially achieve state of the art performances on PROTEINS and D&D. This raises the
question of whether or not these benchmarks should be considered for future evaluations of
deep learning methods for graphs in that the structure does not seem to be that relevant
for the task.

5.2. Vertex Classification

We now turn our attention to vertex classification. Because CGMM and most of the other
DNGNs in literature produce vertex embeddings, it is reasonable to assess the model per-
formance on PPI, a common and robust benchmark for vertex classification. To this aim,
we compare against GraphSAGE (Hamilton et al., 2017) and DGI (Velickovic et al., 2019),
as well as a structure-agnostic baseline that applies logistic regression to the vertex features.
Indeed, GraphSAGE, DGI, and CGMM all share a first pre-training step in which vertex
embeddings are learned on data with no supervised target labels, before being given to a
supervised classifier for vertex prediction. Results are shown in Table 4: we can see that
CGMM has good performances, improving against all GraphSAGE variants except for DGI.
Considering that DGI uses GraphSAGE as part of its framework, it seems that the learning
procedure is what generates the gap between the two methods. While GraphSAGE relies on
a link prediction loss and an entropy penalization term, DGI learns to discriminate vertices
according to a contrastive noise procedure that maximizes the mutual information between
the input and the target value.

Data Used Micro F1

Baseline X 42.2
GraphSAGE-GCN X, A 46.5
GraphSAGE-mean X, A 48.6
GraphSAGE-LSTM X, A 48.2
GraphSAGE-pool X, A 50.2
DGI X, A 63.8

CGMM-full X, A 58.4
CGMM X, A 60.2

Table 4: CGMM’s results of inductive vertex classification on PPI. We report the Micro
Average F1 score. Here, X refers to the input features and A to the adjacency
matrix information.

5.3. Hyper-parameters Analysis

We enrich our empirical analysis with three further studies. The first concerns the impact of
the unibigram technique (introduced in Section 3.3.4) on performances, whereas the second
regards the potential advantages of using all previous layers when training a new layer.
Finally, the last one investigates whether a wider model with fewer layers can perform as
well as a deep model with fewer hidden states. With the exception of Section 5.3.2, in our
analyses we will refer to the standard version of CGMM with L(`) = {`− 1}.
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5.3.1. Unibigram Ablation

In Table 3, we re-evaluated the model on all data sets by constraining CGMM to only use
unigrams. Results indicate a slight performance drop on chemical data sets and a larger
decrease in social data sets. This result suggests that, especially when we only have access
to structural information (i.e., the degree distribution), computing a graph representation
that takes the structure into account can be helpful. Nevertheless, CGMM performances
remain good with respect to the state of the art.

5.3.2. Impact of Previous Layers

Similarly to Section 5.3.1, we have repeated all experiments by conditioning each layer of
the architecture on the entire subset of previous layers, i.e., L(`) = {1, . . . , `−1}. This way,
each layer is free to weigh the previous layers to maximize the likelihood of a graph. Results
(Table 3 and 4, CGMM-full) indicate that the model performs almost always on par (with
a difference within the standard deviation intervals) compared to the significantly more
efficient version that does not use the SP variable Lu. Nonetheless, despite the negligible
performance advantage obtained on these tasks, we recommend treating the use of Lu as a
hyper-parameter of the model when dealing with other node or graph classification tasks.

5.3.3. Sensitivity Analysis

When designing any deep network (let it be neural or probabilistic), it is useful to analyze
the relation between the dimension of each layer’s hidden representation and the number
of layers in terms of performance. In the case of CGMM (and more generally DNGNs), the
depth of the architecture is functional to context spreading, so we would expect that having
a larger hidden representation for each layer is not enough to compensate for the flow of
information between vertices. To show this, we provide an example in Figure 6, where we
show how validation accuracy of a logistic regressor on NCI1 varies while changing the num-
ber of hidden states C. For instance, we observe that the graph representation associated
with point A of size 60 is not sufficient to achieve the performance of the representation
associated with point B, which has size 45. This means that smaller representations as-
sociated with deeper networks can encode more information than those associated with
shallower ones.

5.4. On the Effects of Depth

This Section is meant to answer to two further research questions. First, we want to quantify
the effect of depth on the architecture when coupled with a classifier. The second is about
understanding how much the model’s performance is affected by a random initialization of
the layers. To address both questions, we took a random train-validation-test split of NCI1
to conduct a new experiment. With its 4110 graphs, NCI1 was chosen to minimize the effect
of the data split on results, and consequently on the random initialization of the classifier.
In contrast, the other chemical data sets are much more split-dependent. We trained a
20-layer network for each configuration defined in Table 5. We repeated each process five
times, and the results were averaged. Figure 7 reports accuracy against the number of
layers for one of such configurations, with logistic regression (Figure 7a) and MLP (Figure
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Figure 6: This picture shows that having a larger graph representation with fewer layers
is not always enough to reach the same performance of a deeper network with
a smaller graph representation. Points A and B are associated with representa-
tions of dimensions 60 and 45, respectively. However, we see that the latter is
associated with better validation performances of a logistic regressor on NCI1,
which means that the flowing of contextual information is indeed more beneficial
than increasing the number of hidden states C. Results are averaged over five
independent runs.

7b) classifiers. We see that, in both cases, depth has a beneficial effect on test accuracies,
with slightly worse results on test accuracy from logistic regression due to its strong bias.
Notice how test curves in Figure 7b tend to an asymptote after ten layers; this information
may be used as stopping criterion when constructing the architecture for supervised tasks,
as proposed in Marquez et al. (2018) for CNNs on images.

One interesting thing to notice is that we do not necessarily incur in the curse of dimen-
sionality as the size of the fingerprint grows with the layers. This is because the fingerprint
construction at layer ` is guided by layer ` − 1, and this dependency may well cause the
fingerprint to lie in a sub-space of the original one. This may explain why we do not quickly
overfit after the first few layers.

In addition to the above considerations, we note the following. Since training accuracy
on NCI1 does not significantly vary between different runs (due to different weights’ ini-
tialization), that is an indication that the pooling strategy of Fahlman and Lebiere (1990),
mentioned in Section 4.2, brings negligible advantage in our case. This also holds for PRO-

23



Bacciu, Errica and Micheli

(a) NCI1, logistic regression (b) NCI1, MLP with 128 units

(c) PROTEINS, MLP with 8 units (d) D&D, MLP with 8 units

Figure 7: Stability experiment on NCI1, PROTEINS and D&D that shows how accuracy
varies from 1 to 20 layers. Results are averaged over five independent runs. Col-
ored bands denote standard deviation. While the effect of depth is beneficial for
NCI1, stability experiment on PROTEINS and D&D report a different behav-
ior, which is not to be attributed to random splits. Indeed, we discover that
competitive results can be achieved by trivial methods on PROTEINS and D&D.

TEINS and D&D when the architecture is very shallow (up to three layers), though results
need to be interpreted from a different perspective, as we are about to show.

5.4.1. A Critical Investigation of Chemical Benchmarks

The stability experiments we did on PROTEINS and D&D led to surprisingly different
results. We can see from Figure 7c and 7d that accuracy on validation and test tends to
decrease almost immediately, while standard deviation increases as we add layers. One
may think this behaviour is caused by the way the data set was randomly split. However,
repeating the experiments did not change the final result. It appears that a minimal number
of layers (even 1) is enough to get the best results. Thus, we took inspiration from Ralaivola
et al. (2005) and from the technique of molecular fingerprint to investigate the matter
and validate our hypothesis. In order to assess the practical relevance of the structured
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information for each chemical task, we constructed graph fingerprints by only counting
atoms of the same type. Then, a 10-fold Nested Cross-Validation with Hold-out model
selection was used to assess the performance of different MLP classifiers: the average test
accuracy was 76.0 ± 3.4 for PROTEINS and 77.33 ± 3.7 for D&D, entirely in line with
the state of the art. Instead, this trivial approach was not enough to reach a satisfying
accuracy on NCI1 (69.80± 3.0), meaning that being able to capture structural patterns is
very important for discrimination purposes on this task.

This investigation shows how important it is to establish structure-agnostic baselines,
like the one we used, to understand how much the structure plays a role in the final result.
Our study on depth effects, which is rather lacking in DNGNs’ literature, revealed that more
care should be taken when considering benchmark results. Our beliefs further strengthen
similar statements made in Shchur et al. (2018) for semi-supervised vertex classification
tasks.

Figure 8: Context flow on a real NCI1 graph. We focus on the highly regular rightmost
subgraph, which is influenced by the left part of the structure. Heatmaps show
that, although relatively small, posteriors change as we expected.

25



Bacciu, Errica and Micheli

5.5. Visualization: a Case Study

This part provides a visual exploration and interpretation of CGMM’s internal dynamics.
This kind of analysis is meant to demonstrate how the model extracts different patterns at
each layer of the architecture in a way that is consistent with what stated in Section 3.2.1.
Therefore, Figure 8 shows how information spreads in a real NCI1 molecule. We represent
each vertex’s posterior as a circle chart with C different colours; in this experiment, we use a
4-layer CGMM with C = 3. Please keep in mind that colours assignment between different
layers is irrelevant. The rightmost six atoms of the molecule have the same atomic symbol
so that they will be assigned an identical state at layer 1. What is more, these six atoms
alone form a 2-regular subgraph, which means that their state can only change if context
flows from left to right, as shown by the dashed arrows on the top-left side of the figure. As
discussed in Section 3.3.6, if it were not for the five leftmost vertices context could not flow,
because all “messages” would be identical (both qualitatively and quantitatively). This is
indeed what happens: at each layer, we highlight the vertices we are interested in via dashed
regions, and the associated heatmap (one state per row) proves that posteriors change as
we expected. Thanks to the simplicity of Equation 2, it is easy to understand how CGMM
behaves in this particular situation.

Similarly, we can look at how the model exploits the learned parameters (and the “bot-
tom” states introduced in Section 3.3.6) through E[zuij ]: Figure 9 illustrates what CGMM
infers on average. First of all, each layer has a different average “activation” pattern that
adds new useful information to the final fingerprint. Moreover, we can inspect how the ⊥
contribution, i.e., degree information, is encoded into the new states. In particular, some
components of the previous states, called “C2” because they now include the ⊥ symbol,
have little influence on the average posterior of the random variables, as is the case for com-
ponent 2 at layer 2. Instead, bottom states are always taken into consideration, possibly
because they encode information about the degree of a vertex.

6. Conclusions and Future Works

We have introduced a new probabilistic perspective for scalable deep learning on graph-
structured data. CGMM processes graphs by exploiting an incremental construction of the
architecture to spread contextual information between vertices. Moreover, the model does
not suffer from the vanishing like most typical DNGNs. This new probabilistic formulation
allows us to efficiently and effectively cope with graph and node classification tasks, with
good performances compared to state of the art models. Also, we have thoroughly analyzed
the impact of depth on performance improvements. Therefore, we hope that our work may
lay the foundation of Deep Bayesian Graph Networks (DBGNs), a new probabilistic family
of graph processing methods.

Several research directions can further enhance this architecture for representation learn-
ing on structures. One is the automatic choice of the hyper-parameter C via Bayesian
nonparametric methods, while another is the use of more general aggregation functions
(Castellana and Bacciu, 2019). Other than these, it would be critical to automatically de-
termine when to stop in the construction of the architecture with a criterion that depends
on information-theoretic properties of the inferred states, e.g., the entropy, or to assess
transfer learning capabilities in social or chemical domains.
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Layer 1 Layer 2

Layer 3 Layer 4

Figure 9: Unnormalized posteriors computed on NCI1 data set and averaged over vertices.
By inspection, we can understand how much of a value q(j) is mapped, on average,
to the different components of the new state. The first layer displays averaged
states.

In conclusion, the study of probabilistic models for graphs that automatize the choice of
their hyper-parameters opens appealing challenges for the future development of the field.
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Appendix A. Learning Equations

We start again from Equation 6 to derive the learning equations for a generic layer `;
remember that layer 0 corresponds to a simple mixture model, whose learning equations
are well known. Here, however, we also deal with discrete edge types (taken from a finite
alphabet {1, . . . , A}) by introducing an SP variable Su that weights the contribution of
each edge. The only additional modifications are the introduction of a different transition
distribution for each edge type a, an additional indicator variable, and the definition of

q`
′,a
N (u) as the set of neighbouring posteriors of u that are connected to u via edge a and were

computed at layer `′. The resulting model is a more general version than that of Bacciu
et al. (2018a), in which continuous rather than discrete vertex posteriors are considered.
Finally, note that time and space complexities are now bounded by O(|VG |(|L|A|C2|+KC)).
The extended graphical model is shown in Figure 10.

With the addition of the SP variable Su, the likelihood of the model becomes

L =
∏
g∈G
u∈Vg

C∑
i

P (xu|Qu = i)
∑

`′∈L(`)

P (Lu = `′)P `
′
(Qu = i|q`′N (u))

=
∏
g∈G
u∈Vg

C∑
i

P (xu|Qu = i)
∑

`′∈L(`)

P (Lu = `′)

A∑
a=1

P `
′
(Su = a)P `

′,a(Qu = i|q`′,aN (u))

=
∏
g∈G
u∈Vg

C∑
i

P (xu|Qu = i)
∑

`′∈L(`)

P (Lu = `′)
A∑
a=1

(
P `

′
(Su = a)×

×
C∑
j

P `
′,a(Q = i|q = j)

∑
v∈Na(u) q

`′
v (j)

|N a(u)|
)
,

where N a(u) is the set of u’s neighbours connected via an edge of type a. We dropped the `′

subscript from |N a(u)| because it is independent from the specific layer. In pratice, Su splits
q`

′
Nu

into multiple groups of vertices depending on the type of edge they are connected to u.
Notice that we have introduced all the random variables via marginalization. By means of
the indicator variables introduced in Section 3.3, we can write the complete log-likelihood
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QuQ1 Qu−1 Q|Vg|

Su

. . . . . .

xu

q11 q12 qℓ−1
N (u)qℓ−1

2qℓ−1
1

q1N (u). . . . . . . . .

Layer ℓ

Lu

Figure 10: The extended Bayesian Network implementing layer ` of our model. The SP
variables Lu and Su are used to weigh the contribution of previous layers and
different discrete edge features.

as

logLc = log
∏
g∈G
u∈Vg

C∏
i

{
P (xu|Qu = i)

∏
`′∈L(`)

{
P (Lu = `′)

A∏
a=1

{
P `

′
(Su = a)

C∏
j

{P `′,a(Q = i|q = j)
∑

v∈Na(u) q
`′
v (j)

|N a(u)|
}zui`′aj}zui`′a}zui`′}zui

=
∑
g∈G
u∈Vg

C∑
i

zui logP (xu|Q = i)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

zui` logP (L = `)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

A∑
a=1

zui`a logP `
′
(S = a)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

A∑
a=1

C∑
j

zui`′aj log
P `

′,a(Q = i|q = j)
∑

v∈Na(u) q
`′
v (j)

|N a(u)| . (7)

The E-step of the EM algorithm requires to compute the expectation of the log likelihood
conditioned on the data. With slight abuse of notation and when clear from the context,
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we use q in place of qN (u):

EZ|q,G [logLc(θ|G,q, Z)] =
∑
g∈G
u∈Vg

C∑
i

E[zui|G,q] logP (xu|Q = i)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

E[zui`′ |G,q] logP (L = `)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

A∑
a=1

E[zui`′a|G,q] logP `
′
(S = a)

+
∑
g∈G
u∈Vg

C∑
i

∑
`′∈L(`)

A∑
a=1

C∑
j

E[zui`′aj |G,q] log
P `

′,a(Q = i|q = j)
∑

v∈Na(u) q
`′
v (j)

|N a(u)| .

Moreover, the expectation of an indicator variable is just the probability of its associated
event:

E[zui|G,q] = P (Qu = i|G,q)

E[zui`|G,q] = P (Qu = i, Lu = `|G,q)

E[zui`a|G,q] = P (Qu = i, Lu = `, Su = a|G,q)

E[zui`aj |G,q] = P (Qu = i, Lu = `, Su = a,Ku = j|G,q).

Ku is a categorical random variable with C possible states, such that P `,a(Ku = j) =∑
v∈Na(u) q

`
v(j)/|N a(u)|. Consequently, we can apply the Bayes Theorem on E[zui`aj |G,q],

yielding

E[zui`aj |G,q] = P (Qu = i, Lu = `, Su = a,Ku = j|G,q)

=
P (xu|Qu = i)P (Qu = i, Lu = `, Su = a,Ku = j|q)

P (xu|q)

=
P (xu|Qu = i)P (Qu = i|Lu = `, Su = a,Ku = j,q)P (Lu = `)P `(Su = a)P `,a(Ku = j)

Z

=
P (xu|Qu = i)P `

′,a(Qu = i|q = j)P (Lu = `)P `(Su = a)P `,a(Ku = j)

Z

=
P (xu|Qu = i)P (Lu = `)P `(Su = a)P `,a(Q = i|q = j)P `,a(Ku = j)

Z
, (8)

where Z is the normalization term, obtained by P (xu|q) via marginalization over all the
latent variables (including Ku). Similarly, E[zui], E[zui`] and E[zui`a] can be obtained
by straightforward marginalization of E[zui`aj ]. We now develop the M-step equations
exploiting the expectations computed in the E-step. If we compute the gradient with
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respect of P (L = `) and we add a Lagrange multiplier to enforce probability requirements
we get

∂EZ|G,q[logLc(θ|G,q, Z)]− γ(
∑

`′∈L(`) P (L = `′)− 1)

∂P (L = `)

=
∑
g∈G
u∈Vg

C∑
i

E[zui`|G,q]

P (L = `)
− γ = 0

=
∑
g∈G
u∈Vg

C∑
i

E[zui`|G,q]

γ
= P (L = `). (9)

Deriving with respect to γ yields

∂EZ|G,q[logLc(θ|G,q, Z)]− γ(
∑

`′∈L(`) P (L = `′)− 1)

∂γ

= ��−
(
(
∑

`′∈L(`)

P (L = `′))− 1
)

= 0.

Substituting Equation 9 in the above formula yields

∑
g∈G
u∈Vg

C∑
i

E[zui`|G,q] = γ,

which can be plugged into Equation 9 to obtain the update rule for P (L = `):

P (L = `) =

∑
g∈G
u∈Vg

∑C
i=1E[zui`|G,q]∑

g∈G
u∈Vg

∑C
i=1

∑
`′∈L(`)E[zui`′ |G,q]

. (10)

The derivations for the categorical emission and edge selector distribution are not shown
because they are almost identical to the one above. The corresponding Lagrangian con-
straints are expressed as

∑C
i′ λi′(

∑K
k′ P (x = k′|Q = i′)− 1) and

∑
`′∈L(`) α`′(

∑A
a′=1 P (S`

′
=

a′)− 1). Hence, we obtain the following learning rules:

P (x = k|Q = i) =

∑
g∈G
u∈Vg

δ(xu, k)E[zui|G,q]∑
g∈G
u∈Vg

∑K
k′ δ(xu, k

′)E[zui|G,q]
(11)

P `(S = a) =

∑
g∈G
u∈Vg

∑C
i E[zui`a|G,q]∑

g∈G
u∈Vg

∑C
i

∑A
a′=1E[zui`a′ |G,q]

. (12)
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We now show the update rules for the transition distribution, which is slightly more
troublesome.

∂EZ|G,q[logLc(θ|G,q, Z)]− ∑
`′,a′,j′

µ`′,a′,j′(
C∑
i′=1

P `
′,a′(Q = i′|q = j′)− 1)

∂P `,a(Q = i|q = j)

=

∂
∑

g∈G
u∈Vg

∑
i′,`′,a′

∑
j′
E[zui′`′a′j′ |G,q] log

P `′,a′ (Q=i′|q=j′)
∑

v∈Na′ (u) q
`′
v (j′)

|Na′ (u)|

∂P `,a(Q = i|q = j)
−

∂
∑

`′,a′,j′ µ`′,a′,j′(
∑C

i′=1 P
`′,a(Q = i′|q = j′)− 1)

∂P `′,a(Q = i|q = j)

=
∑
g∈G
u∈Vg

E[zui`aj |G,q]

P `,a(Q = i|q = j)
− µ`,a,j = 0

=
∑
g∈G
u∈Vg

E[zui`aj |G,q]

µ`,a,j
= P `,a(Q = i|q = j).

Deriving with respect to the specific Lagrange multiplier µl,a,j and using the above formula
yields

C∑
i′=1

P `,a(Q = i′|q = j) = 1

∑
g∈G
u∈Vg

C∑
i′=1

E[zui′`aj |G,q] = µ`,a,j .

This leaves us with the transition distribution update formula:

P `,a(Q = i|q = j) =

∑
g∈G
u∈Vg

E[zui`aj |G,q]∑
g∈G
u∈Vg

∑C
i′=1E[zui′`aj |G,q]

. (13)

To conclude, we note that the learning equations for the emission distributions are iden-
tical to those of a mixture model, with the only difference that we substitute the expectation
on the prior with E[zui], which depends on the model’s parameters. This is why we do not
repeat the derivation for other emission distribution e.g., a univariate or multivariate Gaus-
sian. Moreover, to introduce the bottom state ⊥, it suffices to use an additional edge feature
and an additional value for the variable Q.
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