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Abstract
This article describes the Multiagent Decision Process (MADP) Toolbox, a software library to
support planning and learning for intelligent agents and multiagent systems in uncertain envi-
ronments. Key features are that it supports partially observable environments and stochastic
transition models; has unified support for single- and multiagent systems; provides a large number
of models for decision-theoretic decision making, including one-shot and sequential decision making
under various assumptions of observability and cooperation, such as Dec-POMDPs and POSGs;
provides tools and parsers to quickly prototype new problems; provides an extensive range of plan-
ning and learning algorithms for single- and multiagent systems; is released under the GNU GPL
v3 license; and is written in C++ and designed to be extensible via the object-oriented paradigm.

Keywords: software, decision-theoretic planning, reinforcement learning, multiagent systems

1. Introduction

Decision making is a core topic of research in the fields of artificial intelligence and machine learning.
Especially research on planning and learning in stochastic, partially observable and/or multiagent
systems (MASs) has received much attention in the last decade, since these settings hold great
promise to deal with challenging decision-making problems encountered in the real world. For
instance, Markov decision processes (MDPs) can be used for aircraft collision avoidance (Kochen-
derfer and Chryssanthacopoulos, 2011), partially observable MDPs (POMDPs) may enable active
perception or certain robotics applications (Kaelbling et al., 1998; Spaan, 2012; Hsu et al., 2008),
decentralized POMDPs (Dec-POMDPs) (Bernstein et al., 2000; Oliehoek and Amato, 2016) enable
reasoning about the behavior of a team of robots or other decision makers acting on local informa-
tion (Amato et al., 2015), and partially observable stochastic games (POSGs) allow for representing
situations with self-interested agents (Hansen et al., 2004).
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All these models are closely related and instances of what we refer to as multiagent decision
processes (MADPs) (Oliehoek and Amato, 2016). While many software libraries are available for
planning or learning in specific sub-classes of MADPs—e.g., there are many toolboxes focusing on
single-agent, fully observable reinforcement learning—no comprehensive libraries are available that
support the more complex partially observable multiagent settings. The MADP Toolbox aims to
fill this void by providing the building blocks for developing planning and learning algorithms for
existing and novel instances of MADPs. Some important features of the toolbox are:

Toolkit and Library. It can be used in two ways: as a toolbox containing a number of planning and
learning algorithms and as a software library to develop one’s own models and algorithms.

Modular design. It is object oriented, making it easy to extend to new problem classes, and imple-
ment new planning and learning algorithms.

Flexible. It was designed for multiagent problems, providing support for mixing different types of
agents. It is also suitable for single-agent problems, which are just a special case.

Feature rich. It includes many code-intensive features, such as support for factored models (including
variable elimination and max-sum optimization), for basic inference in partially observable settings,
and for simulations of MASs under different communication assumptions. Finally, it comes equipped
with a large number of state-of-the-art methods particularly for (Dec-)POMDPs.

Connected. It reads a number of problem formats: ProbModelXML (Arias et al., 2012), .pomdp
file format, .dpomdp file format, and exports SPUDD (Hoey et al., 1999) format.

Documented. It comes with fairly extensive user and developer documentation. This is comple-
mented by an API reference, as well as a user email list.

2. Supported Problem Classes and Algorithms

Here we give a concise overview of the different MADP frameworks that are currently supported
by the toolbox along with implemented algorithms.1 The MADP Toolbox is designed to support
both planning, i.e., settings where the model is given in advance, and reinforcement learning, i.e.,
settings where no such model is available, but the agents learn to interact during simulations.

Decentralized POMDPs. One of the most general models that the toolbox represents is the Dec-
POMDP. Formally, a Dec-POMDP is a tuple

〈
D,S,A, T,R,O, O, h, b0

〉
, where D = {1, . . . , n} is

the set of n agents, S is a set of states s, A is the set of joint actions a = 〈a1, . . . an〉, T is the
transition function that specifies Pr(st+1|st,at), R(s,a) is the immediate reward function, O is the
set of joint observations o = 〈o1, . . . , on〉, O is the observation function: Pr(ot+1|at, st+1), h is the
horizon of the problem, b0 ∈ 4(S) is the initial state distribution at time t = 0. The typical goal
of the agents is to optimize the expected (possibly discounted) cumulative reward. The toolbox
supports a range of solution methods for Dec-POMDPs, including JESP (Nair et al., 2003), DP-
LPC (Boularias and Chaib-draa, 2008), (Generalized) Multiagent A* (GMAA) and variants (Szer
et al., 2005; Oliehoek et al., 2013), and direct CE (DICE) policy search (Oliehoek et al., 2008a).
In general, GMAA-ICE is the fastest optimal solution method included, while DICE is the most
scalable approximate method for Dec-POMDPs in the toolbox. The toolbox also includes methods
to deal with 1-step delayed communication (Oliehoek et al., 2008b).

POMDPs. A Dec-POMDP with just a single agent or with instantaneous communication reduces
to a POMDP (referred to as a multiagent POMDP in the latter case). The MADP Toolbox
includes a number of solution methods for these: Perseus (Spaan and Vlassis, 2005), Monahan’s
algorithm (Monahan, 1982), incremental pruning (Cassandra et al., 1997) with accelerated vector
pruning (Walraven and Spaan, 2017).

1. For more details on these frameworks, please see, e.g., Oliehoek and Amato (2016).
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MultiAgentDecisionProcessInterface
An abstract base class that declares the primary

properties of a multiagent decision process.

+GetNrAgents()
...etc...

POSGInterface
An interface for POSGs, which are MADPs with

individual reward functions

+GetDiscountForAgent()
+GetRewardForAgent()
+SetDiscountForAgent()
+SetRewardForAgent()
...etc...

MultiAgentDecisionProcessDiscrete
Implementation of properties of a discrete

decision process (implements discrete states,
actions, observations and related functions).

+AddAction()
+AddObservation()
+AddState()
+SetTransitionProbability()
+SetObservationProbability()
...etc...

DecPOMDPInterface
An interface for DecPOMDPs; a POSG where the

reward functions are identical.

+GetDiscount()
+GetReward()
+SetDiscount()
+SetReward()
...etc...

DecPOMDPDiscrete
Implementation of a discrete DecPOMDP

+CreateNewRewardModel()
...etc...

POSGDiscrete
Implements a discrete POSG

+GetDiscount()
+GetRewardType()
+SetDiscount()
+SetRewardType()
+CreateNewRewardModel()
...etc...

POMDPDiscrete
A discrete POMDP model; just a Dec-POMDP with 1

agent.

+GetNrSingleAgentActions()
+GetNrSingleAgentObservations()
...etc...

FactoredPOMDPDiscrete
Implementation of a discrete 

Dec-POMDP model with factored states

+ComputeObservationProbability()
+ComputeTransitionProbability()
+GetLRF()
+GetAgentScopeForLRF()
+GetNrLRFs()
+GetStateFactorForLRF()
...etc...

Figure 1: A simplified view of the object-oriented approach to representing problems. Illustrated is
how both DecPOMDPDiscrete and POSGDiscrete inherit the implementation of states,
actions, observations, etc. from MultiagentDecisionProcessDiscrete. In contrast, Factored-
DecPOMDPDiscrete does not inherit this implementation.

MDPs. When the problem additionally is fully observable, the model simplifies further to the stan-
dard MDP. For these settings, the toolbox provides algorithms such as value iteration and policy
iteration, as well as a GPU accelerated version of the latter. Additionally, there is a Q-learner agent
and an agent performing on-line MDP planning.

Factored Models. Since the aforementioned models can be quite large for real problems, compact
specification is an important issue. The toolbox includes support for compact factored representa-
tions (e.g., Oliehoek et al., 2008c, and references therein). For instance, it includes the GMAA-ELSI
factored Dec-POMDP solver (Oliehoek et al., 2008c) and exports to SPUDD (Hoey et al., 1999).

Inheritance and Extensibility. The toolbox is designed to be extensible via the object-oriented
paradigm. To illustrate this Figure 1 gives a (slightly simplified) illustration of how the discussed
problem classes inherit from one another. The figure also shows that the toolbox support POSGs,
which generalize Dec-POMDPs to include individual payoff functions.

Additional Functionality. A key functionality that the toolbox provides is the ability to conveniently
specify MADPs. Three methods currently exist: 1) using Anthony Cassandra’s plain text .pomdp

file format or a multiagent .dpomdp extension, 2) using the graphical OpenMarkov2 editor for
ProbModelXML files, or 3) writing a C++ class that implements the appropriate interface.

The MADP Toolbox also provides a collection of support classes that represent histories,
beliefs, value functions, and policies, etc., as well as some algorithms to perform belief updates and
approximate inference. Additionally, as part of GMAA, the toolbox also provides classes to represent
and solve collaborative (Graphical) Bayesian games (Oliehoek et al., 2008b, 2012).

2. http://www.openmarkov.org
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Name Type MAS PO Language URL

APPL planning −
√

C++ http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

BURLAP planning/RL
√

− Java http://burlap.cs.brown.edu

AI-Toolbox planning/RL −
√

C++ https://github.com/Svalorzen/AI-Toolbox

RLlib RL − − C++ https://github.com/HerveFrezza-Buet/RLlib

RLPy RL − − Python https://bitbucket.org/rlpy/rlpy

MARL Toolbox RL
√

− Matlab http://busoniu.net/repository.php

PyBrain ML/RL − − Python http://pybrain.org

Table 1: Comparison to related software and toolboxes

3. Technical Details

The software can be used in two ways: as a toolbox and as a library. The fact that it can be used
as a library provides flexibility to, for instance, support the deployment and real-time execution of
decision-theoretic control policies for autonomous agents (such as the markov decision making
ROS package mentioned below). Since it has been implemented in C++ and is organized according to
the object-oriented paradigm, it is easy to extend. Furthermore, as the toolbox aims to support core
planning tasks, C++ provides the additional advantage that it is very fast for such computationally
expensive routines.

The MADP Toolbox is released under the GNU GPL v3 license and can be downloaded from
https://github.com/MADPToolbox/MADP. It is developed under Debian GNU/Linux, has been
tested under various recent Linux distributions and also supports Mac OS X. In order to provide
reliability, the toolbox includes a basic set of tests which cover most of the included functionality.
MADP Toolbox 0.4.1 adheres to the C++98 standard and is relatively self-contained: required
Boost header files and required libraries are included. It comes with extensive documentation both
in form of a user/developer manual as well as API documentation (also available online).

4. Related Software

Many toolboxes exists for decision making, but few deal with MASs or partially observable settings.
Closely related software and toolboxes for planning, reinforcement learning (RL) and machine learn-
ing (ML) applications are shown in Table 1. The columns ‘MAS’ and ‘PO’ indicate whether the
respective toolbox includes algorithms for multiagent or partially observable settings, respectively.
Closest in scope is BURLAP, which does not support partially observable multiagent settings.

The MADP software distribution uses functionality from and therefore includes boost and
libDAI (Mooij, 2010). The MADP Toolbox is the back-end of a number of solution methods
on the THINC lab solver page.3 It is also used in the markov decision making ROS package in
order to parse model files and query agent policies in real time.4
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