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Abstract

KeLP is a Java framework that enables fast and easy implementation of kernel functions
over discrete data, such as strings, trees or graphs and their combination with standard
vectorial kernels. Additionally, it provides several kernel-based algorithms, e.g., online and
batch kernel machines for classification, regression and clustering, and a Java environment
for easy implementation of new algorithms. KeLP is a versatile toolkit, very appealing
both to experts and practitioners of machine learning and Java language programming,
who can find extensive documentation, tutorials and examples of increasing complexity on
the accompanying website. Interestingly, KeLP can be also used without any knowledge
of Java programming through command line tools and JSON/XML interfaces enabling the
declaration and instantiation of articulated learning models using simple templates. Finally,
the extensive use of modularity and interfaces in KeLP enables developers to easily extend
it with their own kernels and algorithms.
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1. Introduction

Kernel methods for discrete structures (Shawe-Taylor and Cristianini, 2004) are popular
and effective techniques for the design of learning algorithms on non-vectorial data, such as
strings (Lodhi et al., 2002), trees (Collins and Duffy, 2002; Moschitti, 2006; Aiolli et al., 2009;
Croce et al., 2011; Annesi et al., 2014) and graphs (Gärtner, 2003; Borgwardt and Kriegel,
2005; Shervashidze, 2011). These kernels are very valuable to model complex relations in
real-world applications, where data naturally has a structured form, e.g., strings and graphs
are used to represent DNA and chemical compounds, or parse trees can encode syntactic
and semantic information expressed in text.

However, current software for structural kernels is mainly limited to specific research,
and is often not made publicly available or easily adaptable to new application domains.
SVM-Light-TK toolkit by Moschitti (2006) is one of few exceptions that provides the
user with different string and tree kernels but no graph kernels. It is written in C language
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thus extending it with new kernels can be costly, especially when new data structures are
required. This may also prevent non programmers to use it for their specific applications.

In designing KeLP, we have capitalized on our previous experience with SVM-Light-
TK and other toolkits to foster the reuse of previous software and models as well as their
extendibility. We provide a software platform for learning on structured data, which is both
easy to use for unexperienced users and easily extendable for developers. KeLP includes
many standard kernel algorithms for classification, regression and clustering as well as pop-
ular kernel functions for strings, trees and graphs. Additionally, it includes kernel functions
for modeling relations between pairs of objects, which are, e.g., required in paraphrasing
detection, textual entailment and question answering (Moschitti and Zanzotto, 2007; Filice
et al., 2015; Tymoshenko and Moschitti, 2015). Most importantly, new data structures,
models, algorithms and kernels can be easily added on top of the previous code, facilitating
and promoting the development of a library of kernel-based algorithms for structured data.

The KeLP source code is distributed under the terms of Apache 2.0 License. No ad-
ditional software is required to be installed in order to use it, the Apache Maven project
management tool resolves all module dependencies automatically. We also provide and
maintain a website with updated tutorials and documentation.

2. The KeLP Framework: an Overview

KeLP is written in Java and uses three different Maven projects to logically separate its
three main components: (i) the framework backbone implements classification, regression
and clustering algorithms operating on vector-based kernels. These core modules along
with SVMs1 are always part of any framework instantiation. (ii) Additional-algorithm
packages, e.g., online kernel machines, Nyström method (Williams and Seeger, 2001) and
label sequence learning (Altun et al., 2003), and (iii) additional-kernel packages, which
include kernel functions for sequences, trees and graphs. A complete and up-to-date list of
algorithms and kernel functions, a full Javadoc API documentation in PDF, and tutorials for
both end-users and developers are hosted on the KeLP website, http://www.kelp-ml.org.

2.1 Machine Learning Algorithms

Learning algorithms in KeLP are implemented following implementation contracts provided
by specific Java interfaces for different scenarios, i.e., classification, regression and clustering,
according to two main learning paradigms, i.e., batch and online. New learning algorithms
can implement these interfaces, thus becoming fully integrated with the other library func-
tions. More in detail: (i) The ClassificationLearningAlgorithm interface supports the
definition of classification learning methods, such as SVMs (Chang and Lin, 2011) or the
Dual Coordinate Descent (Hsieh et al., 2008). (ii) The RegressionLearningAlgorithm

interface supports the definition of regressors, such as ε-SVR (Chang and Lin, 2011).
(iii) The ClusteringAlgorithm interface enables the implementation of clustering algo-
rithms, such as (Kulis et al., 2005). (iv) The OnlineLearningAlgorithm interface sup-
ports the definition of online learning algorithms, e.g., Passive Aggressive (Crammer et al.,
2006), or the Soft Confidence Weighted (Wang et al., 2012) algorithms. Finally, (v) the
MetaLearningAlgorithm interface enables the design of committees, such as the multi-
classification schemas, e.g., One-VS-One and One-VS-All.

1. We include it because of its wide use.
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{ 
  "algorithm": "binaryCSvmClassification", 
  "c": 10, 
  "kernel": { 

    "kernelType": "linearComb", 
    "weights": [ 1, 1 ], 
    "toCombine": [ 
      { 
        "kernelType": "norm", 
        "baseKernel": { 

          "kernelType": "ptk”,       
          "representation":”constituent-tree", 
          "mu": 0.4, 
          "lambda": 0.4, 
          "terminalFactor": 1.0 
        } 
      }, 
      { 
        "kernelType": "linear", 
        "representation": ”wordspace” 
      } 
    ] 
  } 

SVM 

Linear 
combination 

Kernel 
normalization 

Partial Tree 
Kernel 

Linear 
Kernel 

Figure 1: A JSON description of a SVM classifier.

2.2 Data Representation

In KeLP, data is represented by the Example class, which is constituted by (i) a set of
Labels and (ii) a set of Representations. The former enables the design of single or multi-
label classifiers and multi-variate regressors. The latter model examples in terms of vec-
tors (e.g., DenseVector and SparseVector) or structures (e.g., SequenceRepresentation,
TreeRepresentation or GraphRepresentation). In particular, kernels can be defined over
examples encoded by multiple representations (e.g., multiple parse trees, strings, graphs
and feature vectors). This makes the experimentation with multiple kernel combinations
easy, just requiring negligible changes in the code or the JSON description (see Section
2.4), without the need of modifying the input data sets. Additionally, the examples can be
combined in more complex structures, e.g., ExamplePair, useful to learn relations between
objects, e.g., pairs representing question and answer text in QA, or text and hypothesis
in textual entailment tasks. Building other types of data format is extremely simple, e.g.,
KeLP includes the SVM-Light-TK input format for trees and provides many scripts to
use the popular gspan format for graphs (and indirectly for the 111 openBabel formats2).

2.3 Building Kernels from Kernels

KeLP enables (i) kernel composition, i.e., Kab(s1, s2) = (φa ◦ φb)(s1) · (φa ◦ φb)(s2) from
Ka(s1, s2) = φa(s1) · φa(s2) and Kb(s1, s2) = φb(s1) · φb(s2); and (ii) kernel combina-
tions, e.g., λ1Ka(s1, s2) + λ2Kb(s1, s2) × Ka(s1, s2). These operations are coded using
three abstractions of the Kernel class: (i) DirectKernel directly operates on a speci-
fied Representation object, derived from the Example object (e.g., implementing ker-
nels for vectors, sequences, trees and graphs). (ii) The KernelComposition class com-
poses Kernel objects, e.g., PolynomialKernel, RBFKernel and NormalizationKernel.
(iii) KernelCombination class enables the combination of different Kernels, e.g., the Linear-
KernelCombination class applies a weighted kernel sum. (iv) KernelOnPair class operates

2. http://openbabel.org
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on ExamplePair, e.g., to learn similarity functions between sentences (Filice et al., 2015)
or to implement ranking algorithms with the PreferenceKernel class.

public static void run(String trainPath , String testPath , String learningAlgoPath){
// Define (load) the learning algorithm (see the JSON in Fig. 1)
JacksonSerializerWrapper serializer = new JacksonSerializerWrapper ();
ClassificationLearningAlgorithm learningAlgo;
learningAlgo = serializer.readValue(new File(learningAlgoPath),

ClassificationLearningAlgorithm.class);
//Load the datasets
SimpleDataset trainDataset = new SimpleDataset ();
trainDataset.populate(trainPath);
SimpleDataset testDataset = new SimpleDataset ();
testDataset.populate(testPath);
//Learn the classifier
List <Label > classes = trainDataset.getClassificationLabels ();
learningAlgo.setLabels(classes);
learningAlgo.learn(trainDataset);
// Classify and Evaluate
Classifier classifier = learningAlgo.getPredictionFunction ();
Evaluator evaluator = new MulticlassClassificationEvaluator(classes);
for(Example ex: testDataset.getExamples ()){

evaluator.addCount(ex, classifier.predict(ex));
}
System.out.println("ACC:" + evaluator.getPerformanceMeasure("accuracy"));

}

Listing 1: The Java instantiation (and evaluation) of the SVM classifier specified in Figure 1.

2.4 A User-friendly Interfacing with JSON

Each object, kernel function or algorithm, is serializable in JSON or XML. Thus, new
algorithms can be implemented with a JSON description exploiting already implemented
building blocks. The JSON interpreter of KeLP instantiates the corresponding objects
without requiring any Java coding. Note that once a new kernel or learning algorithm is
coded in Java, it will also be automatically available in the JSON format. Thus, it can
be combined and composed with any kernel and algorithm available in KeLP by simply
using JSON specifications. For example, Figure 1 provides a JSON description of an SVM
classifier using a linear combination of a tree kernel with a linear kernel. The procedure
for training and evaluating such classifier can be written in less than 20 code lines, as
shown in Listing 1. Additionally, new kernels can be designed by combining JSON files
and used in the framework by executing terminal commands (runnable jars). This enables
experimenting with most KeLP features without writing any Java code.

3. Related Work and Conclusions

Most kernel-based software assumes data is represented by feature vectors (Hall et al., 2009;
Chang and Lin, 2011; Abeel et al., 2009). Notable exceptions are SVM-Light-TK (Mos-
chitti, 2006) and JKernelMachines (Picard et al., 2013). SVM-Light-TK is entirely
written in C language and its main feature is the high computation speed. Unfortunately,
C does not allow for fast prototyping of new kernel functions and machines. In contrast,
KeLP enables fast and easy implementation of new kernel methods. JKernelMachines
is a Java based package primarily designed to deal with custom kernels that cannot be eas-
ily found in standard libraries. However, many features offered by KeLP are not available
in JKernelMachines, e.g., tree and graph kernels and regression algorithms. Moreover,
KeLP supports easier composition and combination of kernels and learning algorithms.
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